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Motivation

The ongoing discovery of single nucleotide polymor-
phisms (SNPs) and characterization of haplotypes in
human populations is having a fundamental impact on
molecular epidemiology. While likely common poly-
morphic variants interact with exposures to cause
human cancer, the ability to evaluate the role of SNPs
in human disease is limited by available methodologies.
Numerous association studies of SNPs or haplotypes
have been published to elucidate the etiology of cancer,
but there has been inconsistency in the ability to
replicate results. Therefore, a major goal of the field is
to develop the analytical tools needed to examine the
explosion of genetic information available for relating
genetic variants to well-defined epidemiological end
points. Inconsistent methodology and results from
association studies have deflected attention away from
the need to establish sound methodologies for both
execution and interpretation of association study data.
Therefore, we must optimize epidemiological, statistical,
and laboratory approaches to achieve credible outcomes
in association studies.

The goal of the AACR-sponsored conference ‘‘SNPs,
Haplotypes, and Cancer: Applications in Molecular
Epidemiology’’ was to address methodological develop-
ments for epidemiological studies investigating complex
interrelationships of SNPs, haplotypes, and environmen-
tal factors with cancer. As summarized below, the
content of this meeting included discussions related to
the following:

1. Gene Choice: What genes and variants should be
studied and how? What are the relative merits and
costs of candidate gene versus genome-wide associa-
tion studies? How should information about SNP
function be incorporated into association studies?

2. Laboratory and Genotype Data: What are appropriate
laboratory methods? How can adequate quality con-
trol be achieved? What is the role of public database
information?

3. Study Design and Analysis: What study design and
analysis approaches are required to achieve reproduc-
ibility among studies? What issues need to be faced
when dealing with population genetics structure,
including haplotype blocks and ethnic variability?

Choosing Genes and Haplotypes for Association
Studies

Approximately ten million SNPs exist in the human
genome, with an estimated two common missense var-
iants per gene (e.g. , Ref. 1). At least 5 million SNPs have
already been reported in public databases (2). However,
the ability to apply these SNPs in association studies is
limited by problems validating a SNP’s identity, charac-
terizing its occurrence in relevant populations, and
understanding its function. Likely, only a small subset
(perhaps 50,000–250,000) of the total number of SNPs
in the human genome will actually confer small to mod-
erate effects on phenotypes that are causally related to
disease risk (3).

At the meeting, Stephen Sherry (National Center for
Biotechnology Information) suggested several classes of
variants to consider, including SNPs, deletion/insertion
polymorphisms (DIP), simple tandem repeat (STR) poly-
morphisms, named polymorphisms (e.g. , Alu/� dimor-
phisms), and multinucleotide polymorphisms (MNP). Of
these, f3 million SNPs are estimated to be within or
2 kb upstream or downstream from a gene. Sherry re-
ported a ‘‘snapshot’’ of gene-centric SNPs in the dbSNP
database (http://www.ncbi.nlm.nih.gov/SNP) as of
September 2003. The distribution of these variants was
63% intronic, 11% untranslated region, 1% nonsynon-
ymous, 1% synonymous, 24% locus region, <1% splice
site, and <1% unknown coding variant. Recent surveys
of human genetic diversity have estimated that there are
about 100,000–300,000 SNPs in protein coding sequences
(cSNPs) of the entire human genome (1). cSNPs are of
particular interest because some of them, termed non-
synonymous SNPs (nsSNPs) or missense variants,
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introduce amino acid changes into their encoded pro-
teins. nsSNPs constitute about 1% of all SNPs. The rarity
of nsSNPs may be a consequence of selective pressures.
However, a significant fraction of functionally important
molecular diversity in the human population likely is
attributable to the effects on protein function caused by
nsSNPs or alterations in the regulation of genes (known
as rSNPs). For example, the kinetic parameters of en-
zymes, the DNA binding properties of proteins that
regulate transcription, the signal transduction activities
of transmembrane receptors, and the architectural roles
of structural proteins are all susceptible to perturbation
by nsSNPs and their associated amino acid polymor-
phisms. Similarly, John Potter (Fred Hutchinson Cancer
Research Center) argued that perturbations in the reg-
ulation of key elements of a pathway could influence
the risk for cancer outcomes either directly or through
interacting pathways. Tom Hudson (McGill University)
added that a major challenge of future studies will be
to identify and characterize regulatory variants. The re-
searcher will have to ask whether the regulatory SNP
itself or the haplotype in which it may be imbedded is
really the functional unit of interest.

The identification of biologically meaningful, disease-
causing variants from among this large amount of
genomic variability is a key challenge for association
studies. Joel Hirschhorn (Massachusetts Institute of
Technology) invoked the common disease, common
gene hypothesis (4, 5) using methods that rely on
knowledge of candidate genes or methods that rely on
linkage disequilibrium (LD). Other publications have
espoused the importance of rare variants as determi-
nants for common diseases (4). Candidate gene ap-
proaches have the advantage of maximizing inferences
about biological plausibility and disease causality.
However, candidate approaches are limited by the
amount of information that is available about the
function of the gene in a specific disease process. Al-
ternatively, genome-wide approaches have the advan-
tage of scanning the entire genome for associations
without having to rely on choosing a priori candidates.
With advances in high-throughput technology and
genome-wide association methods, these approaches
will be more tractable than in the past. Stephen
Chanock (National Cancer Institute) and David Hunter
(Harvard University) stated that the candidate gene
approach remains viable despite some limitations. The
expectation of genome-wide approaches is still several
years away because of formidable issues of cost and
availability of genotyping platforms and analytical pro-
grams. Hunter, in a talk entitled ‘‘Death, Taxes, and
Candidate Genes,’’ further stated that regardless of
the initial approach, research must ultimately result in
candidate gene studies to identify biologically mean-
ingful causal associations involving specific genes.

Candidate Gene and SNP Choice. A major challenge
in candidate gene studies is to choose appropriate
candidate genes usually based on sound and plausible
biologically driven hypotheses. Chanock and Stacey
Gabriel (Massachusetts Institute of Technology) stressed
choosing markers based on (a) strong prior information
about biological pathways or linkage data; (b) functional
correlates for a SNP or haplotype, including pathway or
the use of evolution-based approaches to identify related

genes based on sequence homology or gene family; and
(c) SNP haplotype studies that start with a ‘‘simple’’
haplotypes (often including known nsSNPs or rSNPs),
which can be expanded to increase the density of SNPs
across the haplotype. Regardless of the approach for
choosing markers, validation of associations in both
comparable and different genetic backgrounds will be
required. At the same time, the working hypothesis will
likely become increasingly complex as knowledge of
interrelated pathways is considered to account for
relevant biological interactions.

William Evans (St. Jude’s Children’s Hospital), Gareth
Morgan (University of Leeds), and Richard Weinshil-
boum (Mayo Clinic) presented the pharmacogenetics and
pharmacogenomics paradigm for studies of candidate
gene and SNP identification, gene discovery, and
genotype-environment interaction. Pharmacogenetics
and pharmacogenomics are excellent paradigms for
studies that extend beyond etiology to studies of
treatment response, gene expression changes, survival,
side effects or toxicities relating to specific agents, timing
of later events, and dosing. With respect to candidate
genes, Weinshilboum stated that the paradigm for
functional gene discovery in pharmacogenetics began
by using the distribution of phenotypic traits to infer
genetic effects. More recently, it has been possible to
relate functionally significant DNA sequence variation to
clinically important variability. Both of these approaches
are complementary and should be both done to un-
derstand the functional significance of genes and SNPs.
Evans also stated that gene expression profiling can be
valuable to identify and characterize candidate genes
(e.g. , for treatment response). Evans also presented
examples in which genetic profiles differed by exposure
(i.e. , where combinations of drug treatments did not
evoke the same expression profile as each treatment
individually). Therefore, expression profile approaches
may be useful for identification of novel genes, charac-
terizing function, novel disease classifications, and
studying genotype-environment interactions.

Genome-Wide and Haplotype-Based Association
Approaches. Gabriel and Eric Lai (GlaxoSmithKline)
noted that causal (candidate) variants need not be
studied directly but that gene discovery studies can be
accomplished using a strategy that relies on LD between
genetic variants. This represents the underlying premise
behind whole genome SNP scans. The whole genome
association approach can identify new candidate genes
or regions. Millions of SNPs are available from the
ATLAS project (http://www.confirmant.com/indexns4.
html), the SNP Consortium (http://snp.cshl.org), and
through public databases such as dbSNP (http://www.
ncbi.nlm.nih.gov/SNP). Over >150 million SNPs are ex-
pected to be analyzed. These data can be used to define
haplotype block structures across the genome and thus
facilitate selection of SNPs for whole genome analysis.

Lai and Gabriel outlined approaches for undertaking
genome-wide or haplotype-based studies. First, appro-
priate epidemiological study designs and adequate
statistical power are essential. The number of samples
and the number of SNPs required for these studies may
be substantially higher than typical studies of the past.
Second, results of genome-wide SNP association studies
might not be easily replicated in subsequent studies but
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could still identify causative regions of the genome.
Similarly, large-scale genome-wide scans may find
surrogate markers that will distinguish cases from
controls but may not identify causative SNPs. Therefore,
replication of associations is crucial to lead to valid and
causative associations. Third, LD blocks exist throughout
the genome, but these blocks are of varying length and
appear to vary according to differences in population
genetics. For example, Stephen O’Brien (NCI) stated
that LD block size tends to be shorter in individuals of
African ancestry and longer in Caucasians. O’Brien also
reported that f400,000 conserved sequence blocks exist
in the human genome, which have been established
by evolutionary constraints, specifically across species.
Within these LD blocks, there is strong allelic association
and limited haplotype diversity. Where haplotype
diversity exists, particularly informative SNPs that best
characterize a haplotype (tagSNPs) can be used to limit
the amount of laboratory and analytical work in
haplotype-based studies. Fourth, use of haplotype
block information has been proposed to increase power
15–50% compared with a SNP-based analysis (6, 8).
However, complete (and resource-intensive) studies of
SNPs in a region are required to achieve sufficient
statistical power. The alternative of studying incomplete
sets of SNPs in a genomic region may result in less power
but still identify causative loci. In this regard, several
questions remain: What level of genomic coverage (i.e.,
how many SNPs) is required to achieve an adequate
result? Are tagSNP approaches adequate? How well do
haplotype blocks need to be characterized and in what
populations before tagSNPs can be reliably used? As
an intermediate approach, Gabriel suggested a survey
approach of candidate genes that encompassed 100 kb
surrounding 200 candidate genes with 1 SNP (each with
>5% minor allele frequency)/5 kb.

After introductory remarks justifying a common SNP
haplotype-based association approach toward assessing
risks associated with genomic variation in candidate
genes, Daniel Stram (University of Southern California,
Los Angeles, CA) introduced a formal statistical measure
(Rh

2) of the predictability of haplotypes based on ge-
notypes and described the use of this criterion for
optimally picking haplotype tagging SNPs to be geno-
typed in large case-control studies. Stram described
two approaches for estimating haplotype-specific risks
in case-control studies (7, 8). The first is to compare
haplotype frequencies in cases and controls separately.
Analysis must allow for error in estimates of haplotype
frequencies and generally cannot control for covariates.
Second, regression substitution methods exist (9), in
which an expected haplotype ‘‘score’’ is calculated as a
predictor variable (e.g. , using proc haplotype in SAS) as
if it were equivalent to the true haplotype. Under the
alternative hypothesis, bias in estimates of effects can be
evaluated and the degree of bias related to the formal
measure of haplotype uncertainty (i.e. , Rh

2). Stram
presented data that demonstrated biases in using the
regression substitution methods are small to none if an
adequate set of haplotype tagging SNPs is studied.
However, biases increase as fewer haplotype tagging
SNPs are included in analysis. The development of these
and other computational approaches to study haplotype
data in samples of unrelated individuals (e.g. , in case-

control or cohort studies) will facilitate the evaluation of
haplotypes in association studies.

Conclusion: Genome-wide association approaches
should be feasible in the years to come but provide
formidable challenges in throughput, databasing, and
analysis. Candidate gene approaches will remain critical
to confirm causal relationships of specific genes in
regions identified by genome-wide or LD-based ap-
proaches. Moreover, the lessons learned from genome-
wide studies are readily applicable to candidate gene
studies and vice versa. Similarly, while knowledge of the
functional significance of SNPs is key to understanding
the biological basis of an epidemiological association,
function can be determined in advance for candidate
gene studies or after the identification of novel genes
from genome-wide association studies.

Laboratory Approaches and Genome Database
Resources

Optimizing Laboratory Throughput and Quality
Control. Doug Bell (National Institute of Environmental
Health Sciences) noted that high parallel (i.e. , many
genotypes, few samples) and high throughput (i.e. , few
genotypes, many samples) approaches are becoming
widely available to molecular epidemiological studies.
Several speakers proposed that an optimal genotyping
approach should include 5–10% duplicate samples, 5%
of SNPs to be genotyped on both DNA strands, <5% no
call rate, >99% accuracy (e.g. , using validity checks with
family sets), and be designed to require the smallest
number of primers possible. Lai and Gabriel indicated
that low-cost approaches (e.g. , per genotype cost as low
as $0.04) are theoretically possible, but this estimate is
not realistic for most laboratories. The largest single cost
is that of hardware, although primer cost mounts with
increasing the number of assays to be performed. The
appropriate way to calculate genotyping cost is to
determine total money spent (including hardware,
reagents, and labor) divided by the number of genotypes
generated.

A major issue for laboratory approaches in association
studies is quality control. Hirschhorn, O’Brien, Gabriel,
and others noted that genotype misclassification can
result in bias (e.g. , toward the null hypothesis for
nondifferential misclassification). Common laboratory
problems include DNA contamination, inadequate qual-
ity or quantity of DNA, ‘‘misarray’’ of samples/plates,
and assay error. Several quality control measures were
suggested to address these issues. Chanock and Gabriel
suggested that sample handling error may be reduced by
typing microsatellite markers (fingerprinting) or other-
wise genetically ‘‘barcoding’’ study participants’ samples
to detect contamination and identify sample mix-ups.
For example, the Identifiler system (Applied Biosystems,
Inc., Foster City, CA) consists of 15 microsatellite mark-
ers, which can be typed on every sample to monitor
contamination or mishandling. Similarly, addition of
parent-offspring trios to plates of DNA can help to iden-
tify non-Mendelian transmissions, which may reflect
sample mix-ups or contamination. Estimation of Hardy-
Weinberg proportions and tests of Hardy-Weinberg
equilibrium can identify deviations from expected
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proportions. Blind duplicates and blanks should be
included in every genotyping run. For example, the
‘‘360 rule’’ dictates that 24 controls be included in every
384-well plate. Cases and controls should never be
separated during the genotyping process to minimize
the potential for differential genotyping error. Consider-
ation of appropriate DNA extraction methods should be
given to ensure appropriate DNA quality and quantity.
Finally, a critical additional approach for ensuring high-
quality laboratory data is the appropriate use of
bioinformatics approaches to data handling to minimize
error in sample handling genotype data. The use of a
Laboratory Information Management Systems (LIMS) is
critical for reducing data errors, particularly when these
systems include built-in error checks.

DNA pooling can be used to increase the efficiency of
association studies. Pak Sham (King’s College) showed
that for N subjects and M SNPs, N � M genotypes are
required without pooling but 2 � M genotypes are
required for cases and controls using pooling (not
considering replicate pools, which may also be required
to account for pool construction error). Accurate sample
dilution and quantitation are required to obtain equal
DNA amounts from each person in pool. Pool construc-
tion may therefore be time consuming and expensive
because extensive DNA quantitation is required. For
example, Sham estimated that it requires one technician
week to aliquot, dilute, and quantitate 100 samples. Pool
construction error can occur if aliquoting the identical
amount of DNA from each sample is not achieved. Pool
measurement error can occur if inaccurate measuring the
allele frequency is made from the pools. A potential
quality control approach is to make multiple duplicate
pools. Sham reported that pool construction error is
much smaller than pool measurement error (although
this may vary from laboratory to laboratory). As
measurement error increases, information in the pool
decreases and optimal pool fraction decreases. Therefore,
pool size must be balanced against the number of
measurements to be made: larger pools may not save
as much effort because many more measurements may
be required to minimize error. Lai noted that while DNA
pooling may be a useful tool for screening associations,
pooling strategies can be limited because once pools are
constructed, reassignment of phenotype or removal from
the pool is impossible. In addition, pools can only be
made once all of the samples are all in hand. This
requires a completed study before pooling approaches
can be undertaken. Despite these potential limitations,
DNA pooling serves as an example of the efficient
approaches that may be required to undertake large-scale
association studies.

Public Databases and Resources. A large amount of
genomic information is available on public databases that
can be of value to researchers undertaking association
studies. For example, Sherry presented the information
available via dbSNP (http://www.ncbi.nlm.nih.gov/
SNP). Meredith Yeager (NCI) and Sherry reported that
most genome information comes from data mining and
genome assemblies; thus, the potential for database
errors is large. For example, SNPs reported in 5–16%
of coding regions represent paralogous variants that are
due to duplicated segments (duplicons) and are therefore
not real SNPs (10). Similarly, 15–30% of SNPs are not

verified and may not exist. In general, SNP frequency
estimates are not widely available, and when they are,
they are often based on little information (few individ-
uals). Because SNP frequencies can vary substantially by
ethnicity, SNP frequencies may not be useful if frequen-
cies are not reported by ethnicity. Only a few public
SNP databases report sequence-verified SNPs. In addi-
tion, many SNP assays are not validated. Those assays
that are validated sometimes provide inconsistent results
by various genotyping methods, including sequencing.
Many layers of validation, including laboratory meth-
ods and ethnicity-specific frequency estimation in mul-
tiple ethnic groups, are required to properly annotate
a SNP before assays can be reliably designed. Tim
Hubbard (Sanger Centre) also reported that databases
such as ENSEMBL (http://www.ensembl.org) can be
used to determine what genes have been validated and
includes functional annotation. The ENSEMBL database
also allows cross-species comparisons and data mining
tools to explore evolutionary conservation and an
interface for data analysis by individual investigators
using their own data and/or public data.

To illustrate the potential for error in relying solely on
public databases, Yeager studied 480 candidate genes.
She and her colleagues observed 7.8 SNPs/gene that
passed the annotation and assay validation protocol. This
translates to f1 probable SNP/154 bp and represents a
higher density than previously reported. Thirty-nine
percent of SNPs identified by resequence analysis of
204 chromosomes were not previously reported in
dbSNP. These data suggest that the density of unknown
SNPs is higher than expected, and many are not reported
in public databases. If this is the case, designing assays
will be prone to failure when unknown SNPs lie within
the PCR product of interest or are within the probe being
used and are not considered in assay design. This may
lead to inability to design assays or result in inaccurate
assays. This kind of variability in assay design and
execution may induce genotyping error that contributes
to inconsistency of results among association studies.

Conclusion: Quality control measures must be imple-
mented to minimize genotype error that may result in
bias and irreproducibility in association studies. Stan-
dardized approaches for biosample handling, genotyp-
ing, data collection, and data processing quality control
methods should be developed. This can include system-
atic opportunities for laboratory exchange to cross-
validate or replicate genotyping and assess error rates.

Study Design and Statistical Analysis: In Search
of a Believable Result

Are Association Studies Replicable? A key issue in
association studies is the ability to replicate association
study findings. Replication of association studies is
required not only to identify biologically plausible
causative associations but also to conclude that a can-
didate gene has no meaningful etiological effect. Hirsch-
horn observed that most associations are not replicated.
This lack of replication can be explained by false-positive
reports (e.g. , spurious associations), false-negative
reports (e.g. , studies that are insufficiently powerful to
identify the association), or actual population differences
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(e.g. , the true associations are different because of
differences in genetic background, exposures, etc.).
Given the perceived lack of consistency in association
studies, what level of confidence can we have in
associations reported to date?

To address this question, Hirschhorn reported on his
group’s meta-analysis (11) that included 25 inconsistent
associations and 301 ‘‘replication’’ studies (i.e. , by
ignoring the initial positive report). Most initial
associations were not replicated, but an excess (20%)
of replicated associations were seen when 5% were
expected under the null hypothesis. This replication is
not solely due to publication bias, because one would
have to hypothesize that 40–80 negative studies were
not reported rather than the average of 12 reported
studies/association. Hirschhorn also concluded that it
was unlikely that these replications represented false-
positives due to ethnic stratification. Different LD
patterns or other population patterns or population-
specific modifiers (genes and/or environments) could
also explain lack of replication, but this was unlikely to
be a significant source of study inconsistency. The first
positive reports also tended to be unreliable estimates
for subsequently reported odds ratios (12), perhaps due
to the ‘‘Winner’s Curse’’ phenomenon, which predicts
that the initial positive report overestimates the ‘‘true’’
value. Indeed, 23 of 25 associations studied showed
evidence for a ‘‘winner’s curse.’’ An additional con-
sequence of this phenomenon is that replication studies
may therefore require larger sample sizes because the
actual replication effects may be smaller than sug-
gested by the initial report. Despite these limitations,
these data indicate that many associations are replica-
ble and may therefore represent truly causative effects
on disease.

Factors that Influence Association Study Results. To
achieve believable, replicable association results, inves-
tigators must consider factors that influence the design,
analysis, and interpretation of these studies. Standards
must be established for agreeing on when associations do
or do not exist based in part on the issues outlined below.

Etiological Complexity . Numerous speakers stated that
the etiology of human disease is complex and the
diseases themselves are etiologically heterogeneous.
Therefore, association study methods need to address
this complexity. Sholom Wacholder (NCI) and Hunter
noted that considering interaction versus stratified effects
may detect different kinds of effects and determine the
context in which a gene’s effect is likely to be important.
The power and efficiency of association studies may be
improved if genetic effects are studied in groups defined
by exposure status, particularly in genotype-environ-
ment interaction studies. Other approaches that can help
to address complexity include studying subsets of cases
defined by histopathology or other characteristics to de-
crease heterogeneity, using methods that allow multidi-
mensional classification of outcome, or by taking
advantage of intermediate end points (e.g. , preneoplastic
events and time to progression) rather than limiting
studies to genotype-disease associations.

Power and Sampling Design . Studies with larger sample
sizes have advantages over smaller studies, including

pooled or meta-analyses of smaller studies. Potter stated
that large cohort studies have advantages over individ-
ual case-control studies, but these must have adequate
biosamples, risk factor data, and power to evaluate
disease subtypes. In this context, he proposed to develop
‘‘The Last Cohort,’’ which would include 500,000 or more
individuals with complete data and biosamples, to be
followed longitudinally. Several paradigms for under-
taking large studies include large prospective cohort
studies, multicenter case-control studies (e.g. , Inter-
Lymph; Nat Rothman, NCI), consortia of individual
cohorts or case-control studies (e.g. , the NCI Cohort
Consortium for Breast and Prostate Cancer; Hunter),
large cohort studies (e.g. , UK Biobank, http://www.
ukbiobank.ac.uk; EPIC, http://www.iarc.fr/EPIC; Elio
Riboli), and population-based family designs (e.g. ,
deCODE, http://www.decode.is; Laufey Amundadottir).
Despite these existing data sets, genotyping technology
and statistical methods have continued to develop, but
the population resources required to address relevant re-
search questions of interest have not advanced as quickly.

Despite the general desire to see large-scale studies,
mounting them is challenging. Results from very large
studies have the potential to generate small and clinically
‘‘unimportant’’ results that may not be reproducible
unless a similar sample is studied. Riboli noted that
while large studies have the advantage of being able to
detect small magnitude effects and may minimize the
chance of false-positive results, numerous smaller stud-
ies may be more efficient for gene discovery and
replication than a few very large studies. Multicenter
studies of relatively rare cancers may be required,
particularly if subset analyses are to be done. However,
multicenter studies raise additional concerns (especially
if study consortium is developed post hoc), including
consistency of genotyping and questionnaire data across
centers, correlation and other confounding by center, and
other study design and data collection differences across
centers. The implications for meta-analyses of data are
also unfavorable if there are publication biases or other
methodological problems with the individual studies.
Therefore, several issues need to be resolved before
large-scale studies can be appropriately undertaken.

Population Structure . Inability to achieve replication
among association studies may be due to characteristics
of the study population. Hunter raised the concern that
replication requires that studies themselves be compara-
ble (e.g. , in terms of ethnicity or other confounding
factors), which is not usually the case. Numerous
speakers addressed the question of genetic structure of
populations related to ethnicity or race. Jonathan
Pritchard (University of Chicago) noted that Europeans
are genetically the least diverse and thus unlikely to pose
major problems in stratification and bias. Rick Kittles
(Howard University) reported on population genetic
structure that exists among admixed groups, particularly
African Americans who demonstrate high genomic het-
erogeneity due to recent population admixture. The con-
cern that arises out of the existence of this population
structure is that confounding by ethnicity (i.e. , population
stratification) may lead to improper inferences from
association studies. Several individuals (Wacholder; Peter
Shields, Georgetown University; Yiting Wang, University
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of Pennsylvania) presented data suggesting that race
and ethnicity are not important source of bias, particu-
larly in North American populations of Western
European descent when proper epidemiological meth-
ods are used because differences in baseline disease risks
are not large enough to confer significant confounding.
This view is consistent with a recent research by several
investigators (13–16). For example, Cardon and Palmer
argued that poor study design may be important than
population stratification in conferring bias to association
studies.

Several analytical approaches exist to either circum-
vent problems imposed by population genetic structure
or that use this structure in gene identification. Pritchard
suggested that population stratification can be addressed
by using family-based methods, or by analyzing un-
linked markers as controls. In the latter approach, if
association is solely due to population structure, there
should be similar associations across random markers
across the genome. Several approaches exist that can
assess this phenomenon (17, 18). The ‘‘structured
association’’ approach identifies a set of individuals
who are drawing their alleles from different background
populations or ethnicities. This approach uses informa-
tion from unlinked markers to infer their ancestry and
learn about population structure. It further uses this
population structure information to adjust the associa-
tion that is observed. The ‘‘genomic control’’ approach
instead uses the distribution of association tests statistics
for the unlinked markers to adjust the usual m2 test of
association for the overdispersion caused by hidden
population stratification.

Taking advantage of population genetics structure can
also aid association studies. O’Brien reported on the
mapping by admixture LD approach, which reduces the
number of SNPs that are needed for a whole genome
association scan because LD tends to extend over a much
broader range in recently admixed populations. This
approach uses differences in disease risk by ethnicity and
studies markers that also differ by ethnicity. Markers can
then be studied to estimate the proportion of ethnic
admixture (e.g. , proportion of African ancestry) using a
hidden Markov model and then combine that analysis
with mapping data to identify genomic regions that
appear to differ between cases and controls. Similarly,
Duncan Thomas (University of Southern California)
discussed coalescent, Bayesian clustering, and haplotype
sharing approaches to make inferences about the
evolutionary history of SNP and haplotype distributions
(8). These approaches can show how putative suscepti-
bility alleles have arisen in specific populations and may
thereby identify disease-associated haplotypes.

Data Interpretation . Assuming study design and anal-
ysis issues have been appropriately managed, it remains
problematic to interpret results of many association
studies to conclude that a SNP is (or is not) causally
associated with disease. Several approaches have been
suggested to objectively evaluate the evidence of a
particular hypothesis. Wacholder posed this question
by stating that three possible decisions can be made at
the time an association is reported: the association is
‘‘noteworthy’’; no important association can exist; or no
decision can be made. Wacholder proposed a false-
positive report probability (FPRP) to aid in making this

decision (19). The FPRP depends on prior probability,
power, and size of effect. When the prior probability is
high, the FPRP is low and an association is more likely to
be correct. When prior probability is low, increasing
sample size only marginally increases the chances of
finding a true association. Thus, true associations are
more likely to be identified if the prior probability of
finding an effect is high. In addition, small studies may
be more likely to give a false-positive result. The FPRP
can be implemented to provide investigators with the
ability determine the extent of toleration of false reports.
Second, the investigator must choose a prior probability.
For example, the investigator can ask what is the prob-
ability that there is a nontrivial causal effect (e.g. , relative
risk = 1.5) between SNP and disease before perform-
ing data analysis. This prior probability can be chosen
based on functional, genomic (i.e. , type of mutation and
function), and epidemiological data (i.e. , incorporate
previous reports and information about the quality of
study, sample size, power, and relationship with diseases
of likely similar etiology). Both Wacholder and Chanock
indicated that future candidate gene studies may face
lower prior probabilities as association studies expand
to candidate genes about which less is known a priori .
Third, the investigator must choose a clinically or
etiologically meaningful effect size (e.g. , relative risk or
odds ratio) and calculate the FPRP for each SNP and
compute over a range of priors. The investigator can
conclude that the result is ‘‘noteworthy’’ if the FPRP
exceeds some predetermined threshold. Similarly, the
investigator can compute a false-negative report proba-
bility to assist in deciding there is no association. As
before, false-negative report probability depends on
power, sample size, prior probability, and effect size.

Hirschhorn suggested the prior probability of associ-
ation for a single random SNP depends on the existence
of haplotype blocks, with prior probabilities in the
range of 1 in 10,000 to 1 in 100,000. For candidate gene
associations (assuming 300 candidates are studied,
3 haplotype blocks exist per gene, and there are 4 haplo-
types/block, f3600 candidate variants exist, and half
of these are causal), the prior probability for associa-
tion is 1 in 100 to 1 in 1000. Thus, candidate gene as-
sociation studies are predicted to have a substantially
higher prior probability of seeing an effect than random
SNP association studies.

Conclusion: Appropriate study design and adequate
statistical power are crucial to obtaining meaningful
association results. Additional considerations of etiological
complexity and heterogeneity, prior probability or FPRP of
association, and population genetics structure should be
incorporated in association studies. Central coordination
of positive and null association reports would help
researchers to digest the literature, but no such coordinated
database currently exists to track this information.

How Can Meaningful Results Be Obtained from
Association Studies?

Several critical recommendations were made to im-
prove the chances of reporting replicable, believable
associations (suggested by several participants includ-
ing Hunter; O’Brien; Potter; Tom Sellers, Moffitt Cancer
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Center; Daniela Seminara, NCI; and others). These recom-
mendations should be incorporated into the design, anal-
ysis, and interpretation of all future association studies.

n Strive to decrease false-positive results. Consideration
of FPRP may aid this process.

n Strive to decrease false-negative results. Perform
studies using sufficiently large sample sizes to ensure
adequate statistical power to detect small effect sizes
and to study appropriate interactions or effects within
relevant strata.

n Conclude associations exist only in the presence of
small P values, possibly adjusted for multiple tests.

n Associations must be replicated to be believable. This
may require pooled/meta-analyses, a coordinated in-
terdisciplinary approach to speed up research pace
that benefits from an economy of scale, maximized
infrastructure for bioinformatics and biospecimen
management, and increased data resource sharing.

n Identify criteria that can be used to decide when a SNP,
haplotype, or gene is NOT associated with disease.

n Epidemiological associations should be coupled with
biological function to better motivate studies and to
enable interpretation of association results.

n Effects of population genetics structure should be
further studied, including studies undertaken in well-
characterized ethnic subsets when population struc-
ture may affect the results.

n Studies should consider knowledge of the prior
probability that a SNP or haplotype is associated with
the disease and increase this probability by selecting
candidates from regions of linkage peaks, incorporat-
ing functional information, using bioinformatics com-
putational tools.

n Use haplotype mapping approaches to identify ge-
nomic regions associated with disease followed by
candidate gene studies to elucidate the actual causa-
tive genes and variants of interest. Similarly, extend
candidate gene association studies using haplotype
information.

n Laboratory approaches must optimize precision and
accuracy, including appropriate quality control, sample
preparation, and duplicate samples, and ensure sample
integrity using DNA fingerprinting, robust genotyping
assays, plating cases and controls together.

n Consider a full range of etiological models: for exam-
ple, analyses should not be limited to only dominant
or recessive effects unless strongly dictated by function-
al data. Gene dosage effects should also be considered.

n Consider the context of the association by evaluating
environmental exposures (i.e. , genotype-environment
interaction) and the epistatic context of associations
(i.e. , genotype-genotype interactions). Methods should
be developed for exploring the joint effects of many
genes and environmental factors involved in a com-
mon pathway or competing pathways jointly rather
than one at a time or in pairwise combinations (20, 5).

n Consider etiological heterogeneity by evaluating his-
topathological or other data that subclassify disease to
get more homogeneous groupings for analysis.

n Novel designs and analytical methods should be con-
sidered, including multistage designs that combine
information from haplotypes and population structure.

n Determine the clinical and population significance of a
gene by assessing the relative and attributable risk
seen in the association.

n Rules for data sharing, particularly when consortium
studies are being undertaken, need to be established.

n Researchers should consider how to translate SNP-
based association study results in terms of clinical and
public health applications.

The ability to implement these and other measures
will determine whether association studies involving
SNPs or haplotypes will provide meaningful information
about disease etiology or outcome and thus whether this
information can be further translated into cancer pre-
vention, clinical practice, or basic science studies that
elucidate disease mechanism.
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